## FSTU6800

## 10-Bit Bus Switch with Precharged Outputs and -2V Undershoot Protection

## General Description

The Fairchild Switch FSTU6800 provides 10-bits of highspeed CMOS TTL-compatible bus switching. The low on resistance of the switch allows inputs to be connected to outputs without adding propagation delay or generating additional ground bounce noise. Both the A Ports and the B Ports have "undershoot hardened" circuit protection to sup port an extended input range to 2.0 V below ground. Fairchild's integrated Undershoot Hardened Circuit (UHC®) senses undershoot at the I/Os, and responds by preventing voltage differentials from developing and turning on the switch. The device also precharges the B Port to a select able bias voltage ( Bias V ) to minimize live insertion noise.
The device is organized as a 10-bit switch with a bus enable ( $\overline{\mathrm{OE}}$ ) signal. When $\overline{\mathrm{OE}}$ is LOW, the switch is ON and Port A is connected to Port B. When $\overline{\mathrm{OE}}$ is HIGH, the switch is OPEN and the B Port is precharged to BiasV through an equivalent $10-\mathrm{k} \Omega$ resistor.

## Ordering Code:

| Order Number | Package Number | Package Description |
| :--- | :---: | :--- |
| FSTU6800WM | M24B | 24-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-013, 0.300 Wide |
| FSTU6800QSC | MQA24 | 24-Lead Quarter Size Outline Package (QSOP), JEDEC MO-137, 0.150 Wide |
| FSTU6800MTC | MTC24 | 24-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide |

Devices also available in Tape and Reel. Specify by appending the suffix letter " X " to the ordering code.

## Logic Diagram



Pin Descriptions

| Pin Name | Description |
| :---: | :---: |
| $\overline{\mathrm{OE}}$ | Bus Switch Enable |
| A | Bus A |
| B | Bus B |
| BiasV | Bus B Voltage Bias |

## Connection Diagram

| $\overline{\mathrm{OE}}-1$ | 24 | - $\mathrm{V}_{\mathrm{CC}}$ |
| :---: | :---: | :---: |
| $\mathrm{A}_{0}-2$ | 23 | - $\mathrm{B}_{0}$ |
| $\mathrm{A}_{1}-3$ | 22 | $-\mathrm{B}_{1}$ |
| $\mathrm{A}_{2}-4$ | 21 | $-\mathrm{B}_{2}$ |
| $\mathrm{A}_{3}-5$ | 20 | - $\mathrm{B}_{3}$ |
| $\mathrm{A}_{4}-6$ | 19 | $-\mathrm{B}_{4}$ |
| $\mathrm{A}_{5}$ - $^{7}$ | 18 | - $\mathrm{B}_{5}$ |
| $\mathrm{A}_{6}-8$ | 17 | - $\mathrm{B}_{6}$ |
| $\mathrm{A}_{7}-{ }^{9}$ | 16 | - $\mathrm{B}_{7}$ |
| $\mathrm{A}_{8}-10$ | 15 | - $\mathrm{B}_{8}$ |
| $\mathrm{A}_{9}-11$ | 14 | - $\mathrm{B}_{9}$ |
| GND-12 | 13 | - BIASV |

## Truth Table

| $\overline{\mathbf{O E}}$ | $\mathbf{B}_{\mathbf{0}}-\mathbf{B}_{\mathbf{9}}$ | Function |
| :---: | :---: | :---: |
| L | $\mathrm{A}_{\mathbf{0}}-\mathrm{A}_{9}$ | Connect |
| H | BiasV | Precharge |

[^0]| Absolute Maximum Ratings(Note 1) |  |
| :---: | :---: |
| Supply Voltage ( $\mathrm{V}_{\mathrm{CC}}$ ) | -0.5 V to +7.0 V |
| DC Switch Voltage ( $\mathrm{V}_{\mathrm{S}}$ ) | -2.0 V to +7.0 V |
| Bias V Voltage Range | -0.5 V to +7.0 V |
| DC Input Voltage ( $\mathrm{V}_{\text {IN }}$ ) ( Note 2) | -0.5 V to +7.0 V |
| DC Input Diode Current ( $\mathrm{I}_{\mathbf{K}}$ ) $\mathrm{V}_{\mathbf{1 N}}<0 \mathrm{~V}$ | $-50 \mathrm{~mA}$ |
| DC Output (lout) Sink Current | 128 mA |
| DC V $\mathrm{CC}^{\text {/GND }}$ Current ( $\mathrm{I}_{\mathrm{CC}} / \mathrm{l}_{\mathrm{GND}}$ ) | +/- 100 mA |
| Storage Temperature Range ( $\mathrm{T}_{\text {STG }}$ ) | $-65^{\circ} \mathrm{C}$ to $+150^{\circ}$ |

## Recommended Operating

 Conditions (Note 3)| Power Supply Operating $\left(\mathrm{V}_{\mathrm{CC}}\right)$ | 4.0 V to 5.5 V |
| :--- | ---: |
| Precharge Supply (BiasV) | 1.5 V to $\mathrm{V}_{\mathrm{CC}}$ |
| Input Voltage $\left(\mathrm{V}_{\mathrm{IN}}\right)$ | 0 V to 5.5 V |
| Output Voltage $\left(\mathrm{V}_{\mathrm{OUT}}\right)$ | 0 V to 5.5 V |
| Input Rise and Fall Time $\left(\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}\right)$ |  |
| $\quad$ Switch Control Input | $0 \mathrm{nS} / \mathrm{V}$ to $5 \mathrm{nS} / \mathrm{V}$ |
| $\quad$ Switch $\mathrm{I} / \mathrm{O}$ | $0 \mathrm{nS} / \mathrm{V}$ to DC |
| Free Air Operating Temperature $\left(\mathrm{T}_{\mathrm{A}}\right)$ | $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ |

Note 1: The Absolute Maximum Ratings are those values beyond which he safety of the device cannot be guaranteed. The device should not be perated at these limits. The parametric values defined in the Electrical Characteristics tables are not guaranteed at the absolute maximum ratings The Recommended Operating Conditions tables will define the conditions for actual device operation

Note 2: The input and output negative voltage ratings may be exceeded if the input and output diode current ratings are observed.
Note 3: Unused control inputs must be held HIGH or LOW. They may not float.

## DC Electrical Characteristics

| Symbol | Parameter | $\mathrm{V}_{\mathrm{Cc}}$ <br> (V) | $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85{ }^{\circ} \mathrm{C}$ |  |  | Units | Conditions |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Min | Typ (Note 5) | Max |  |  |
| $\mathrm{V}_{\text {IK }}$ | Clamp Diode Voltage | 4.5 |  |  | -1.2 | V | $\mathrm{I}_{\mathrm{IN}}=-18 \mathrm{~mA}$ |
| $\mathrm{V}_{\mathrm{IH}}$ | HIGH Level Input Voltage | 4.0-5.5 | 2.0 |  |  | V |  |
| $\mathrm{V}_{\text {IL }}$ | LOW Level Input Voltage | 4.0-5.5 |  |  | 0.8 | V |  |
| 1 | Input Leakage Current | 5.5 |  |  | $\pm 1.0$ | $\mu \mathrm{A}$ | $0 \leq \mathrm{V}_{\mathrm{IN}} \leq 5.5 \mathrm{~V}$ |
| $\mathrm{I}_{0}$ | Output Current | 4.5 | 0.25 |  |  | mA | BiasV $=2.4 \mathrm{~V}, \mathrm{~B}=0$ |
| $\mathrm{I}_{\mathrm{OZ}}$ | OFF-STATE Leakage Current | 5.5 |  |  | $\pm 1.0$ | $\mu \mathrm{A}$ | $0 \leq \mathrm{A} \leq \mathrm{V}_{\mathrm{CC}}, \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}}$ |
| $\mathrm{R}_{\mathrm{ON}}$ | Switch On Resistance <br> (Note 4) | 4.5 |  | 4 | 7 | $\Omega$ | $\mathrm{V}_{\mathrm{S}}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{IN}}=64 \mathrm{~mA}$ |
|  |  | 4.5 |  | 4 | 7 | $\Omega$ | $\mathrm{V}_{\mathrm{S}}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{IN}}=30 \mathrm{~mA}$ |
|  |  | 4.5 |  | 8 | 15 | $\Omega$ | $\mathrm{V}_{\mathrm{S}}=2.4 \mathrm{~V}, \mathrm{I}_{\mathrm{I}}=15 \mathrm{~mA}$ |
|  |  | 4.0 |  | 11 | 20 | $\Omega$ | $\mathrm{V}_{\mathrm{S}}=2.4 \mathrm{~V}, \mathrm{I}_{\mathrm{IN}}=15 \mathrm{~mA}$ |
| $\mathrm{I}_{\mathrm{CC}}$ | Quiescent Supply Current | 5.5 |  |  | 3 | $\mu \mathrm{A}$ | $\mathrm{V}_{\mathrm{S}}=\mathrm{V}_{\text {CC }}$ or GND, $\mathrm{I}_{\text {OUT }}=0$ |
| $\Delta \mathrm{I}_{\mathrm{CC}}$ | Increase in $\mathrm{I}_{\text {CC }}$ per Input | 5.5 |  |  | 2.5 | mA | $\overline{\mathrm{OE}}$ input at 3.4 V <br> Other inputs at $\mathrm{V}_{\mathrm{CC}}$ or GND |
| $\mathrm{I}_{\text {BIAS }}$ | Bias Pin Leakage Current | 5.5 |  |  | $\pm 1.0$ | $\mu \mathrm{A}$ | $\overline{\mathrm{OE}}=0 \mathrm{~V}, \mathrm{~B}=0 \mathrm{~V}, \mathrm{Bias} \mathrm{V}=5.5 \mathrm{~V}$ |
| Iozu | Switch Undershoot Current | 5.5 |  |  | 100 | $\mu \mathrm{A}$ | $\mathrm{I}_{\mathrm{IN}}=-20 \mathrm{~mA}, \overline{\mathrm{OE}}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{OUT}} \geq \mathrm{V}_{\mathrm{IH}}$ |
| $\mathrm{V}_{\text {IKU }}$ | Voltage Undershoot | 5.5 |  |  | -2.0 | V | $0.0 \mathrm{~mA} \geq \mathrm{I}_{\mathbb{N}} \geq-50 \mathrm{~mA}, \overline{\mathrm{OE}}=5.5 \mathrm{~V}$ |

Note 4: Measured by the voltage drop between A and B pins at the indicated current through the switch. On resistance is determined by the lower of the
voltages on the two (A or B) pins.
Note 5: Typical values are at $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$

## AC Electrical Characteristics

| Symbol | Parameter | $\begin{gathered} \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C}, \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{RU}=\mathrm{RD}=500 \Omega \end{gathered}$ |  |  |  | Units | Conditions | Figure No. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\mathrm{V}_{\text {CC }}=4.5-5.5 \mathrm{~V}$ |  | $\mathrm{V}_{\mathrm{Cc}}=4.0 \mathrm{~V}$ |  |  |  |  |
|  |  | Min | Max | Min | Max |  |  |  |
| $\mathrm{t}_{\text {PHL }}$, PLLH | Prop Delay Bus to Bus (Note 6) |  | 0.25 |  | 0.25 | ns | $\mathrm{V}_{1}=$ OPEN | Figures 1, 2 |
| $\mathrm{t}_{\text {PZH }}$ | Output Enable Time | 7.0 | 30.0 |  | 35.0 | ns | $\begin{aligned} & \mathrm{V}_{\mathrm{I}}=\mathrm{OPEN} \\ & \text { BiasV = GND } \end{aligned}$ | Figures 1, 2 |
| $t_{\text {PZL }}$ |  | 7.0 | 30.0 |  | 35.0 | ns | $\begin{aligned} & \begin{array}{l} \mathrm{V}_{\mathrm{I}}=7 \mathrm{~V} \\ \operatorname{Bias} \mathrm{~V}=3 \mathrm{~V} \end{array} \end{aligned}$ |  |
| $\mathrm{t}_{\mathrm{PHZ}}$ | Output Disable Time | 1.0 | 6.1 |  | 6.5 | ns | $\begin{aligned} & \mathrm{V}_{\mathrm{I}}=\mathrm{OPEN} \\ & \mathrm{BiasV}=\mathrm{GND} \end{aligned}$ | Figures 1, 2 |
| $t_{\text {PLZ }}$ |  | 1.0 | 7.3 |  | 6.8 | ns | $\begin{aligned} & \begin{array}{l} \mathrm{V}_{\mathrm{I}}=7 \mathrm{~V} \\ \text { BiasV }=3 \mathrm{~V} \end{array} \end{aligned}$ |  |

Capacitance (Note 7)

| Symbol | Parameter | Typ | Max | Units | Conditions |
| :--- | :--- | :---: | :---: | :---: | :---: |
| $\mathrm{C}_{\mathrm{IN}}$ | Control Pin Input Capacitance | 3 |  | pF | $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$ |
| $\mathrm{C}_{\mathrm{I} / \mathrm{O}}$ | Input/Output Capacitance | 5 |  | pF | $\mathrm{V}_{\mathrm{CC}}, \overline{\mathrm{OE}}=5.0 \mathrm{~V}$ |

## AC Loading and Waveforms



Note: Input driven by $50 \Omega$ source terminated in $50 \Omega, \mathrm{RU}=\mathrm{RD}=500 \Omega$
Note: $\mathrm{C}_{\mathrm{L}}$ includes load and stray capacitance, $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$
Note: Input PRR $=1.0 \mathrm{MHz}, \mathrm{t}_{\mathrm{W}}=500 \mathrm{~ns}$
FIGURE 1. AC Test Circuit


FIGURE 2. AC Waveforms



Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.
LIFE SUPPORT POLICY
FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.
www.fairchildsemi.com

[^0]:    UHC $®$ is a registered trademark of Fairchild Semiconductor Corporation.

